Two-phase Flow Visualization Employing Gauss- Newton Method in Microchannel

نویسندگان

  • Yonghong Liu
  • Mingyan Zu
  • Xiantao Wang
  • Je-Eun Choi
چکیده

Flow behaviour monitoring on the micro-scale is very important in many industrial and biochemical process. Electrical resistance tomography (ERT), as an alternative technique to visualize multi-phase flows, has high temporal resolution for monitoring fast transient processes. However, the complexity of microchannel fabrication end up with the difficulty of electrical data sampling and the nonlinearity and ill-posedness of the inverse problem often cause the poor spatial resolution of the reconstructed images. In this paper, Agilent based data acquisition hardware was set up for reliable data retrieval from a novel microchannel. Gauss-Newton method with adaptive threshold (GNAT) technique was presented to improve the spatial resolution of ERT images. Preliminary experimental results reveal that ERT system based on Agilent data acquisition unit and GNAT method can effectively visualize the solidliquid two-phase flow in microchannel.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Subcooled two-phase flow boiling in a microchannel heat sink: comparison of conventional numerical models

Subcooled flow boiling in multi-microchannels can be used as an efficient thermal management approach in compact electrical devices. Highly subcooled flow boiling of HFE 7100 is studied in two microchannel heat sinks to choose a proper numerical model for simulating boiling flows in microchannels. Results of five different numerical models, including Volume of Fluid (VOF), Eulerian boiling, Eul...

متن کامل

Three-dimensional CFD modeling of fluid flow and heat transfer characteristics of Al2O3/water nanofluid in microchannel heat sink with Eulerian-Eulerian approach

In this paper, three-dimensional incompressible laminar fluid flow in a rectangular microchannel heat sink (MCHS) using Al2O3/water nanofluid as a cooling fluid is numerically studied. CFD prediction of fluid flow and forced convection heat transfer properties of nanofluid using single-phase and two-phase model (Eulerian-Eulerian approach) are compared. Hydraulic and thermal performance of microch...

متن کامل

Study of MHD Second Grade Flow through a Porous Microchannel under the Dual-Phase-Lag Heat and Mass Transfer Model

A semi-analytical investigation has been carried out to analyze unsteady MHD second-grade flow under the Dual-Phase-Lag (DPL) heat and mass transfer model in a vertical microchannel filled with porous material. Diffusion thermo (Dufour) effects and homogenous chemical reaction are considered as well. The governing partial differential equations are solved by using the Laplace transform method w...

متن کامل

Propionic acid extraction in a microfluidic system: simultaneous effects of channel diameter and fluid flow rate on the flow regime and mass transfer

In this work, extraction of propionic acid from the aqueous phase to the organic phase (1-octanol) was performed in T-junction microchannels and effects of channel diameter and fluid flow rate on the mass transfer characteristics were investigated. The two-phase flow patterns in studied microchannels with 0.4 and 0.8 mm diameters were observed. Weber ‎ number and surface-to-volume ratio were ca...

متن کامل

Solid-Liquid Two-Phase Flow Image Reconstruction Based on ERT Technique in Microchannel

Monitoring the flow behaviour on the micro-scale is very important in many industrial and biochemical process, the multiphase coexistence in microchannel provides many attractive characteristics compared to a single-phase flow. The precise flow rate control and well-defined channel geometries make it possible for us to make detailed investigation on multiphase flow phenomena on micro scale. Thi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014